The Negative Effects of Shared Leadership: An Application of Agent-Based Modeling Based on Lab Experiment Data

 $\bullet \bullet \bullet$

INGRoup Presentation Steven Zhou July 20, 2024

We love shared leadership!

≡ Forbes		Subscribe Sign In Q								
LEADERSHIP STRATEGY Bye-Bye, Heroic Leadership. Here Comes Shared Leadership										
	BUSINESS NEWS DAILY									
Carsten Tams Former Cont I write about organizational	START	GROW								
Mar 9, 2018, 03:26pm EST	Home > Lead Your Team > Leader	ship								
TWEET THIS	What is shared	ıred Leadership:								

eadership? organizations. eadership is not (increase the sense

inter depend Using 50 effect in greater le meta-analytic s of shared le mance. Employ leadership is ated measuren. insights into

Shared leadership vs. traditional leadership Why is shared leadership important?

Examples of shared

He **Businesses Run Thems**

Business News Daily Contributing Writ

Updated Dec 01, 2021

Sharing knowledge keeps compa

size estimates. Specifically, as compared to studies that conceptualized and employe ments of overall shared leadership from members (i.e. an aggregation approach)

'As Bizarre as It Sounds': At Ohio State, Trustees Will Do the President's Iob

By David Jesse | MAY 5, 2023

H: Bi

Re

Le

S N

COURTNEY HERGESHEIMER/COLUMBUS [

Ohio State's Board of Trustees at a public meeting in 2021

On Monday morning, Ohio State University won't have a president — either interim or permanent. Instead, cabinet-level administrators will report directly to the university's governing-board subcommittees.

Annual Review of SL (Zhu et al., 2018)

Core Research Question:

To what degree does shared leadership produce negative outcomes (the "dark side") and under what conditions are these exacerbated?

Proposed Model of the "Dark Side" of SL

Proposed Model of the "Dark Side" of SL

Why computational modeling?

- Growing critique of traditional hypothetico-deductive model of scientific reasoning found in traditional lab experiments (Debrouwere & Rosseel, 2021)
- Teams are a complex combination of complex individuals, which traditional analyses cannot adequately capture (Kozlowski & Chao, 2018)
- Computational modeling allows us to establish simple, micro-level rules and processes (e.g., "if... then...") to explore how they lead to complex macro-level emergent phenomena
- Agent-based modeling is a specific form that generates simulated "agents" (in this case, SL team members) that interact in a designated space and through designated processes to produce some set of results.

Example of agent-based computational model

Residential Segregation Model (Schelling, 1971): an ABM that shows how individual agents' (i.e., peoples') preferences for living near similar neighbors can lead to large-scale segregation

Three studies using ABMs to study shared leadership

- Sullivan et al. (2015): describes how individual differences (e.g., motivation to lead, personality) and relational variables (e.g., number of friends) influences leadership claim/grant processes at a micro level, then how that aggregates to macro-level SL structures depending on physical space (i.e., how far apart team members are in the model)
- Travers (2018): describes how internal team environment, external team coaching, and vertical transformational and empowering leadership impact the strength and pace of SL emergence over time
- Lungeanu et al. (2022): describes how eight different leadership structures (including SL) impact development of mental models in 4-member crews over the course of 45 days

Summary

- Based on my theoretical model of the dark side of SL...
- The lab experiment (Study One) investigates each form of SL separately (three conditions)
- The ABM (Study Two) explores more complex interactions of blended forms of SL to lead to blended outcomes, with parameters based on lab experiment data
- ABMs can also manipulate additional parameters such as team size, number of team roles/functions, and how many days the SL team is working together

Lab Experiment Procedure

HEXACO

measures

Game-

playing

ability

Simultaneous SL Condition:

- All team members can take actions at any time
- Teams created to be either high or low personality similarity (average *I*_{pa}; McCrae, 1993)

Distributed SL Condition:

- Team members can only perform their assigned action
- Opponent "team" script written to be either "difficult" or "easy" to model task complexity

Rotated SL Condition:

- Only one team member can take actions per turn, and this rotates each turn
- Team interactions manipulated through instructions and Zoom restrictions to either allow development of strong mental model or not

Post-Game Measures

- SL density
- Separation by function
- Separation by time
- Perceived difficulty and TMM
- Relationship Conflict
- Role Overlap
- Transition Failures
- Performance

Parameter Estimates

Outcome	Predictor	Standardized Beta	Standard Error
Relationship Conflict	SL X Team	-0.141	0.210
with Team Member #1	Personality Similarity		
Relationship Conflict	SL X Team	0.759	2.037
with Team Member #2	Personality Similarity		
Relationship Conflict	SL X Team	1.837	2.288
with Team Member #3	Personality Similarity		
Role Overlap	SL X Difficulty	0.162	0.121
Transition Failure	SL X TMM	0.632	0.635

Agent-Based Model Input Parameters

Parameter	Values	Description									
п	3, 4, 5, 6, 7, 8, 9	Number of people (agent	Number of people (agents) on the shared leadership team								
f	3, 4, 5, 6, 7, 8, 9	Number of functions to v	Number of functions to which agents can be assigned								
Pl	$0 \rightarrow 100$, increments of 10	Separation by function	Separation by Function (P1)	Separation by Time (P2)	Type of Shared Leadership						
P2	$0 \rightarrow 100$, increments of 10	Separation by time	$ \begin{array}{c} 0 \\ 100 \\ 0 \end{array} $	0 0 100	simultaneous shared distributed rotated						
probability	low, medium, high	Probability of effect deter parameter estimates ("lov literature review ("high") ("medium")	rmined by the lab experi w"), estimates derived fr), or somewhere in betwo	ment om the een							

17,787 different conditions X 30 iterations each = 533,610 simulations

ABM Process Outline

- Step 1. Initialize (create) SL team based on input parameters (*n*, *f*, *P1*, *P2*) and randomly drawn personality and team mental model scores
- Step 2. For each tick, generate a task (t_i where $i = \{1, 30\}$) with two parameters:
 - Task interdependence: number of functions required to adequately complete the task, randomly drawn from between one and *f* functions
 - Task duration: how long the task is active, randomly drawn from between 0 and number of days remaining in the simulation

Step 3. Identify which team members will work on the task, depending on:

- Assigned functions: team members that are assigned functions that match the task complexity will work on the task
- Timing: team members who are assigned to lead during that "day" (t_i) will work on the task

ABM Process Outline

- Step 4. Compute outcome variables:
 - Relationship conflict: compare the personalities of team members working on the task using $I_{pa} \rightarrow$ based on low/medium/high probabilities, determine % likelihood of one "unit" (SD) increase in relationship conflict
 - Role overlap: each instance where the task requires agents to engage in a function "outside" of their assigned area → based on low/medium/high probabilities, determine % likelihood of one "unit" (SD) increase in role overlap
 - Transition failure: each instance where a handoff occurs such that a task is passed from person 1 to person 2 → based on low/medium/high probabilities, determine % likelihood of one "unit" (SD) increase in transition failure

ABM Process Outline

- Step 5. Repeat Steps 2-4 for d = 30 days, tally up outcome variables at the end of the simulation period
- Step 6. Record one row of data: *n*, *f*, *d*, *P1*, *P2*, average I_{pa} , average task complexity, average team mental model scores, total units of each outcome variable
- Step 7. Repeat Steps 1-6 for each combination of input parameters, totalling 533,610 rows of data

Running the ABM...

Analyses

533,610 simulations showed:

- 1. Simultaneous SL predicted relationship conflict: $\beta = -0.32$, adj. $R^2 = 0.11$ Moderator (personality similarity) was positive: $\beta = 0.30$, $\Delta R^2 = 0.12$
- 2. Distributed SL predicted role overlap: $\beta = 0.44$, adj. $R^2 = 0.20$ Moderator (task interdependence) was positive: $\beta = 0.80$, $\Delta R^2 = 0.16$
- 3. Rotated SL predicted transition failure, but negligible: $\beta = 0.11$, adj. $R^2 = 0.01$ Moderator (TMM) was negative, but negligible: $\beta = -0.04$, $\Delta R^2 = 0.03$
- 4. P1 = 10 (low separation by function) and P2 = 0 (no separation by time) produced the best linear combination of outcomes
- 5. Number of team members, number of functions, differential weighting of outcomes all changed the results

Future Directions

- 1. Adapting the ABM to focus on performance and efficiency of SL teams
- 2. Adapting the ABM to disaggregate individual- and team- level variables (e.g., currently team mental model is team-level and identical for all individuals on the team)
- 3. Adapting the ABM to allow for growth/change of the team

The Negative Effects of Shared Leadership: An Application of Agent-Based Modeling Based on Lab Experiment Data

 $\bullet \bullet \bullet$

Thank you!

Find me at www.stevenzhou.us

Table: Correlation matrix from lab experiment data

	Mean	SD	Range	1	2	3	4	5	6	7	8
1. age	26.90	10.86	18-70								
2. games_enjoy	4.39	0.75	1-5	0.01							
3. games_good	3.48	0.78	1-5	-0.08	0.47***						
4. games_freq	3.40	1.08	1-5	0.00	0.64***	0.53***					
5. games_ability	50.97	4.05	6-30	-0.16*	0.33***	0.64***	0.40***	0.87			
6. Hon	36.10	6.94	10-50	0.27***	-0.02	0.04	0.04	0.03	0.75		
7. Emo	34.25	6.91	10-50	-0.07	-0.02	-0.18*	-0.01	-0.23**	0.05	0.73	
8. Ext	31.91	6.99	10-50	0.20**	-0.01	0.15	-0.03	0.06	0.15*	-0.13	0.78
9. Agr	33.78	6.82	10-50	0.08	0.02	0.04	0.04	0.01	0.36***	-0.09	0.35***
10. Con	36.40	6.41	10-50	0.41***	-0.07	-0.01	-0.07	-0.02	0.35***	-0.01	0.25***
11. Ope	35.32	6.86	10-50	0.42***	0.26***	0.12	0.18*	0.01	0.10	0.12	0.20**
12. Team_IPA ^a	18.92	2.25	14.16- 25.46	0.48***	0.00	0.02	-0.03	-0.09	0.33***	0.04	0.43***
13. SL_distrib	3.14	1.46	1-5	-0.12	0.00	0.04	0.06	0.13	0.10	0.09	-0.01
14. SL_rotated	2.79	1.51	1-5	-0.10	-0.06	-0.02	0.04	0.02	0.10	-0.15*	0.00
15. SL_density	7.59	1.27	2-10	-0.10	-0.05	0.08	0.02	0.06	0.00	-0.07	0.09
16. perform ^a	25.67	14.58	0-46	0.19**	0.07	-0.06	-0.03	-0.04	-0.09	0.00	-0.05
17. difficulty	11.15	3.78	3-21	0.17*	0.06	0.15*	0.12	0.08	0.16*	0.15*	0.09
18. TMM	16.27	3.12	4-20	0.12	-0.03	-0.04	-0.02	-0.02	0.19*	0.06	0.11
19. rc_1	7.23	3.76	6-30	-0.07	-0.05	0.13	0.07	0.08	-0.16	-0.10	0.13
20. rc_2	6.88	2.96	6-30	-0.13	-0.03	0.13	0.15	0.11	-0.07	-0.12	-0.05
21. rc_3	6.65	2.26	6-30	-0.09	-0.01	-0.06	-0.10	-0.02	-0.03	0.09	-0.01
22. ro	5.25	2.48	4-20	-0.03	-0.11	0.03	0.08	0.04	-0.12	-0.02	-0.04
23. tf	4.98	2.04	3-12	0.00	-0.03	0.00	0.01	-0.02	-0.09	0.00	-0.01

Table: Correlation matrix from lab experiment data (cont.)

	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1. age														
2. games_enjoy														
3. games_good														
4. games_freq														
5. games_ability														
6. Hon														
7. Emo														
8. Ext														
9. Agr	0.77													
10. Con	0.19*	0.75												
11. Ope	0.12	0.18*	0.74											
12. Team_IPA	0.29***	0.50***	0.37***											
13. SL_distrib	-0.03	0.01	-0.14	-0.02										
14. SL_rotated	0.09	-0.06	-0.04	-0.09	0.28***									
15. SL_density	0.13	-0.05	-0.05	0.03	0.20**	0.23**								
16. performance	-0.05	-0.05	0.08	-0.01	-0.08	0.06	-0.10							
17. difficulty	0.07	0.10	0.06	0.14	0.16*	-0.14	0.13	-0.40***	0.89					
18. TMM	0.14	0.10	0.00	0.02	0.29***	0.33***	0.22**	0.27***	0.08	0.83				
19. rc_1	-0.05	-0.14	-0.09	0.02	0.06	0.10	0.06	-0.24**	0.04	-0.21*	0.95			
20. rc_2	-0.07	-0.10	-0.26**	-0.07	0.04	0.12	-0.08	-0.19*	0.01	-0.14	0.78***	0.95		
21. rc_3	-0.11	-0.06	-0.04	-0.07	-0.04	-0.09	-0.26**	0.05	-0.01	-0.05	0.48***	0.46***	0.95	
22. ro	-0.18*	0.02	-0.13	0.00	0.03	0.03	-0.02	-0.29***	0.10	-0.23**	0.65***	0.82***	0.31***	0.87
23. tf	-0.11	-0.06	-0.05	0.03	-0.09	-0.13	-0.22**	-0.27***	0.08	-0.46***	0.15	0.15	0.05	0.29***

Table: Correlation matrix from agent-based model data

	1	2	3	4	5	6	7	8	9	10
1. n										
2. f	0.00									
3. P1	0.00	0.00								
4. P2	0.00	0.00	0.00							
5. personality similarity	0.00	0.00	0.00	0.00						
6. task complexity	0.00	0.92***	0.00	0.00	0.00					
7. team mental model	0.00	0.00	0.00	0.00	0.00	0.00				
8. relationship conflict	0.19***	0.03***	-0.11***	-0.48***	-0.27***	0.03***	0.00			
9. role overlap	0.16***	0.31***	0.44^{***}	-0.45***	0.00	0.34***	0.00	0.39***		
10. transition failure	0.32***	0.04***	-0.17***	0.11^{***}	0.00	0.06***	-0.18***	-0.05***	0.04***	